UirginiaTech

Pavement Macrotexture

Center for

Sustainable Transportation

Infrastructure

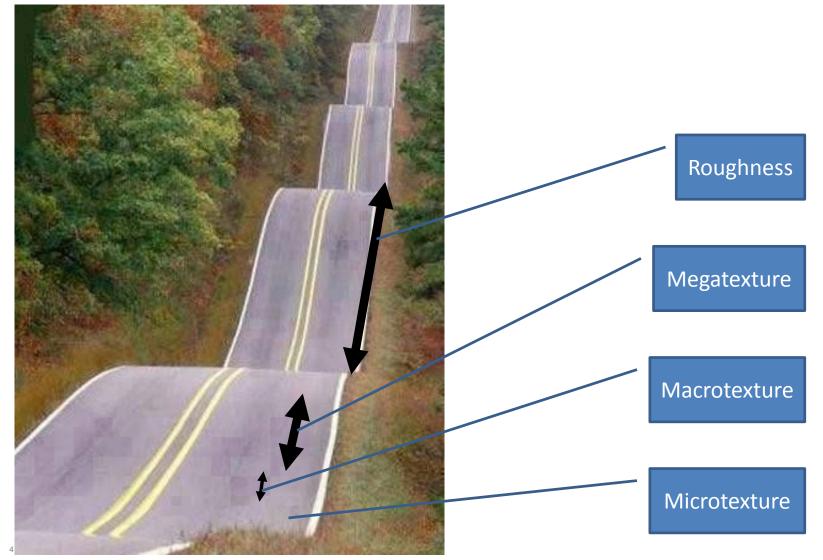
State of the Art and of the Practice

Vincent Bongioanni

Center for Sustainable Transp. Infrastructure (CSTI)

Overview

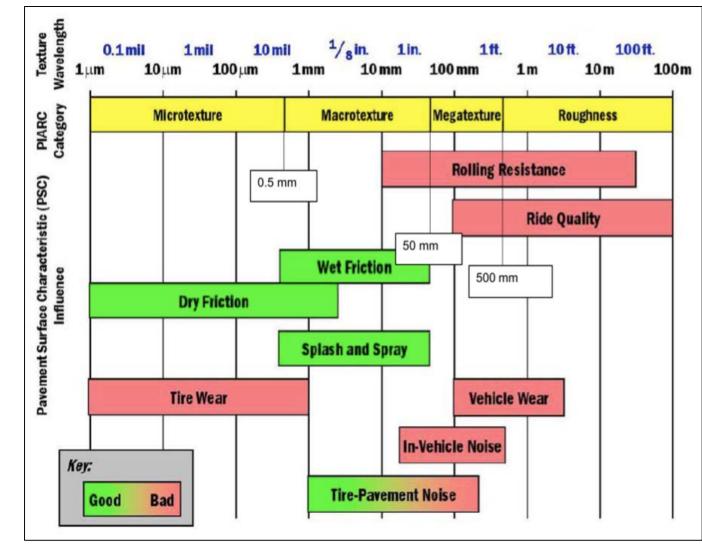
- Introduction to macrotexture
- Macrotexture parameters
- Operationalizing macrotexture data collection
- Who's collecting macrotexture data?
- Upcoming equipment comparison


Introduction to macrotexture

Center for Sustainable Transportation Infrastructure

Center for Sustainable Transp. Infrastructure (CSTI)

What the Wavelength ???!!!?



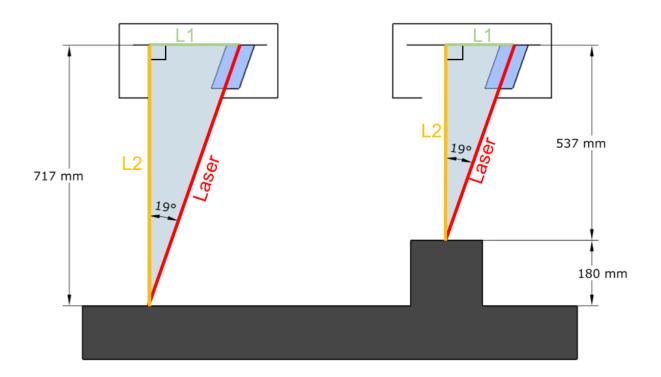
Advancing Transportation Through Innovation

https://i.pinimg.com/474x/5b/0c/49/5b0c4990d1aa44e7ad36c0b5e162d2e5--tulsa-oklahoma-roller-coasters.jpg

Pavement Texture Characteristics

Source: Adapted from PIARC

UirginiaTech


Transportation Institute

Advancing Transportation Through Innovation

5

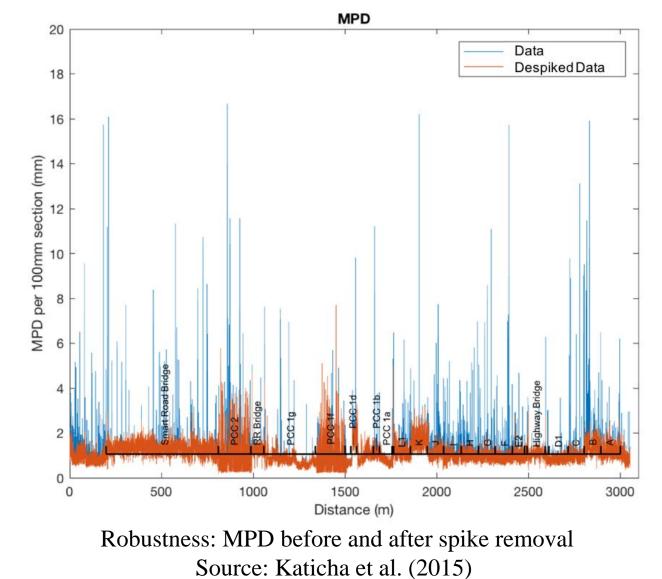
Texture Method	Spec.	Туре	Speed	Texture Parameter ¹	Technology	Referen
Volumetric						
Sand patch	E-965	Volumetric	N/A	MTD	Manual	Current
Grease patch	NASA	Volumetric	N/A	MTD	Manual	
HydroTimer	E-2380	Volumetric	N/A	MTD	Mechanical	HydroT
Manual			•			
Profile recorder		2-D profile	N/A	Average peak height	Mechanical	Ashkar El Genc
Manual depth gauge	-	1-D depth	N/A	Depth	Tine and groove depth	
Stationary Laser System	S					
C.T. Meter	E-2157	2-D profile	N/A	MPD	Laser	Current
ELAtextur	E-1845	2-D profile	N/A	MPD/ ETD	Laser	(IWSm)
Laser Texture Scanner	E-1845	2-D profile	N/A	MPD/ ETD RMS	Laser	(Ames 2
DSRM	-	2-D profile	N/A	MPD	Laser & optics	
Stationary Optical imagi	ng system	S		-		
Stereo Vision System	-	3-D area measurement	N/A	MPD/ MTD	Digital stereovision	Flintsch
Photometric stereo	-	3-D area measurement	N/A	MPD/ RMS	Surface normal vector maps: 4-point photo stereo & integration	El-Geno
Pavement Surface Imager ² Mark ½	-	Surface Normal Vectors for 2-D analysis	N/A	MTD/ others	Surface normal vectors - polynomial texture mapping	Goodm
Walking Speed Laser Sys	stem					
ARRB Walking Profiler TM2 Texture Meter,	ISO 13473	2-D profile	< 5 mph	MPD	Laser (line)	ARRB
ROBOTEX	-	2-D profiles (from 3-D scan)	< 5 mph	MPD	Laser (line)	TRANS
High Speed Laser Equip	ment (HS	LE)				
HSLE (Single spot laser)	E-1845	2-D profile	0-60 mph	MPD	Laser	Various
HSLE (Line laser)	E-1845	2-D profile	0-60 mph	MPD	Laser (line)	Various
3-D Laser/ camera	-	3-D area	<60 mph	MPD/ ETD	Laser and line scan camera	Various

Principle of Laser Triangulation

L2 $tan(\theta) = L1$

If L1 measured by sensor = 246.9mm, 246.9mm * tan(19) = 717mm

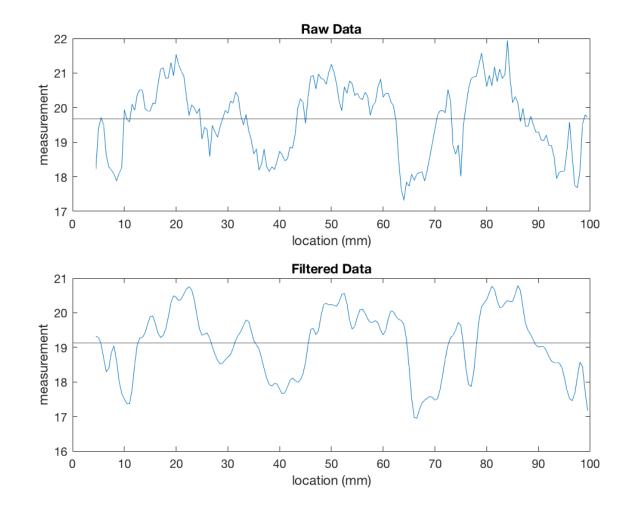
If L1 measured by sensor = 184.9mm, 184.9mm * tan(19) = 537mm


Setting first distance measurement (717mm) = 0, Height of object in second measurement = 537mm - 717mm = -180mm

Advancing Transportation Through Innovation

7

Data Processing: Removal of Outliers

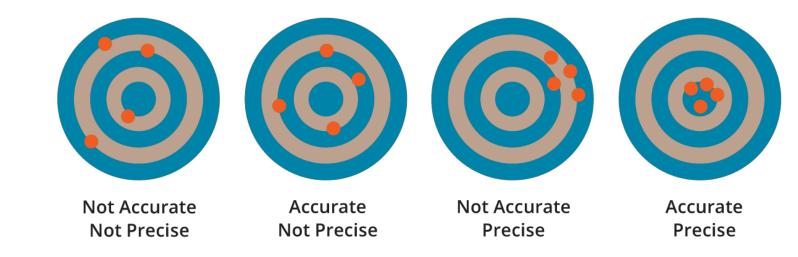


8

UirginiaTech

Data Processing: Filtering

Raw data mean = 19.7 Filtered data mean = 19.1



Advancing Transportation Through Innovation

9

Criteria for Evaluating Measurement Technologies

- Precision and Accuracy
 - -Sub-millimeter under harsh conditions (debris, spray, truck bounce)
 - -Precise: repeatable results under identical experimental conditions
 - -Accurate: unaffected by variations not within control of operator

Advancing Transportation Through Innovation ✓ Bias

10

-Minimize the difference between the measured and actual profiles

Virginia lech

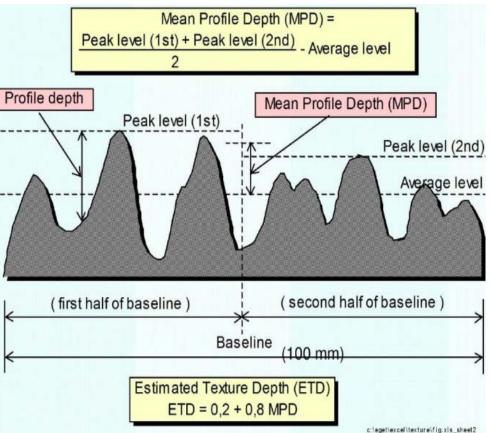
Transportation Institute

Macrotexture parameters

Center for Sustainable Transportation Infrastructure

Center for Sustainable Transp. Infrastructure (CSTI)

Available Macrotexture Parameters


	Parameter	Reference	Strengths	Limitations
1.	MTD - Mean Texture Depth	ASTM E965 (2015)	Time-tested	Operator error
2.	MPD – Mean Profile Depth	ASTM E1845 (2015); ISO 13473-1 (1997)	Time-tested, widely used	Typically, limited sampling of roadway
3.	ETD - Estimated Texture Depth	ASTM E1845 (2015); ISO 13473-1 (1997)	Relation to MTD Collected by MPD equipment	Correlation-based parameter
4.	SMTD - Sensor Measured Texture Depth	Roe et al. (1998)	Uses statistical measure (vs. MPD's 2 peaks)	Typically limited sampling of roadway
5.	PD – Profile Depth	ASTM E1845 (2015)	Basic measure, information can be further processed	Uses single peak height as reference
6.	TD - Texture Depth	ISO 13473-1 (1997)	Basic measure, information can be further processed	Uses average of three highest peaks in 3-D profile
7.	RMS - Root Mean Square	Wennink and Gerritsen (2000)	Stronger statistical basis, describes variation	Not widely used in US
8.	Texture Spectra PSD – Power Spectral Density Texture Power Spectra TL – Texture Level	Goubert (2007), Anfosso-Lédée and Do (2002), Leandri and Losa (2015)	Relation to road noise, some operations computationally simpler	Not widely used in US, can require additional analysis

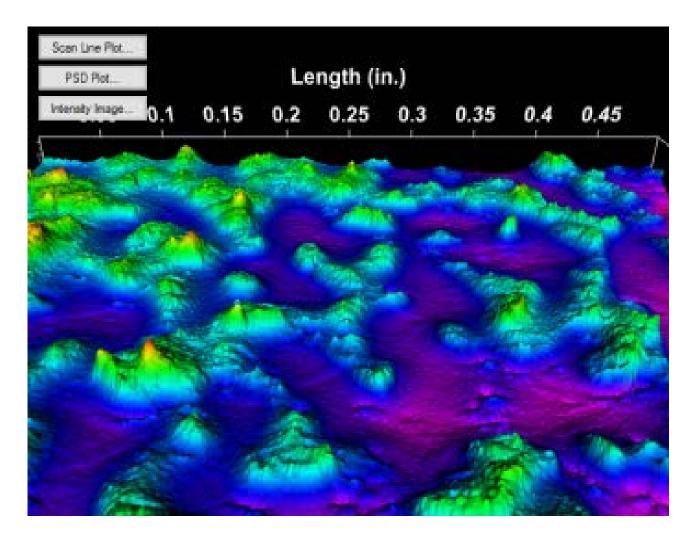
Advancing Transportation Through Innovation

12

Static Macrotexture Measurement

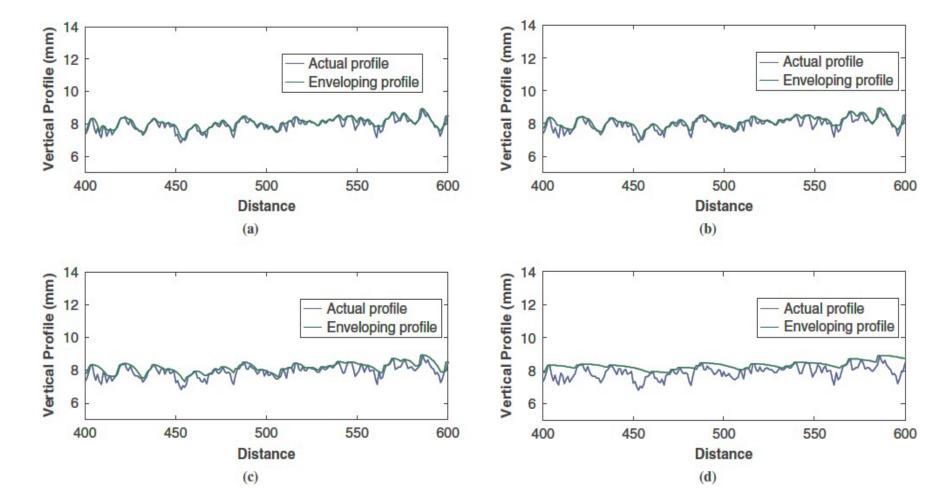
Advancing Transportation Through Innovation

Example CT Meter and MPD Calculation MPD Figure Source: ISO 13473-1 (1997)



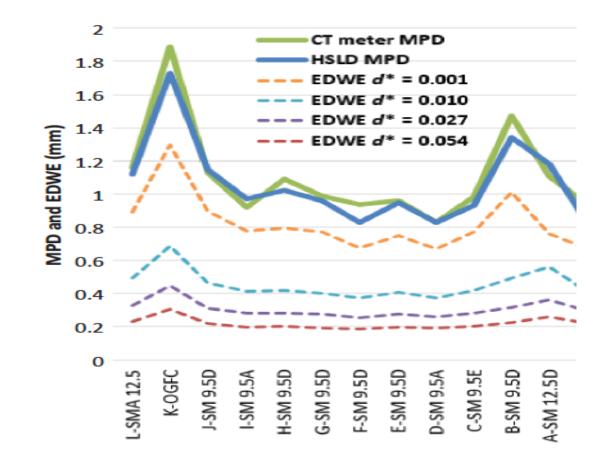
Emerging Macrotexture Parameters

Parameter	Reference	Strength	Limitatio
MTD3 - Digitally Simulated 3-D Mean Fexture Depth	Liu et al. (2016)	High Resolution; correlation to established parameters	Most often gathered by stationary dev
RMSD3 – 3D Root Mean Square Deviation	Liu et al. (2016)	High Resolution; correlation to established parameters	Most often gathered by stationary dev
MPDi - Mean Profile Depth from 3-D image neasurements	El Gendy and Shalaby (2007)	High Resolution; correlation to established parameters	Typically gathered by stationary dev
 Enveloping Profiles (Goubert 2007) Empirical Physical Spectral Effective Area of Water Evacuation 	Von Meier et al. (1992), Klein et al. (2004), Clapp (1983), Mogrovejo et al. (2016)	Accounts for more realistic area for water evacuation. Improved correlations to friction and noise	Not implemen in existing software or measurement schemes
Wavelet Transformations	Leandri and Losa (2015) Zelelew et al. (2013)	Greater granularity on measured profile waveform	Processing intensive


Example of 3-D Texture Data

Source: Ames Laser Texture Scanner (2013)

Enveloping Profiles



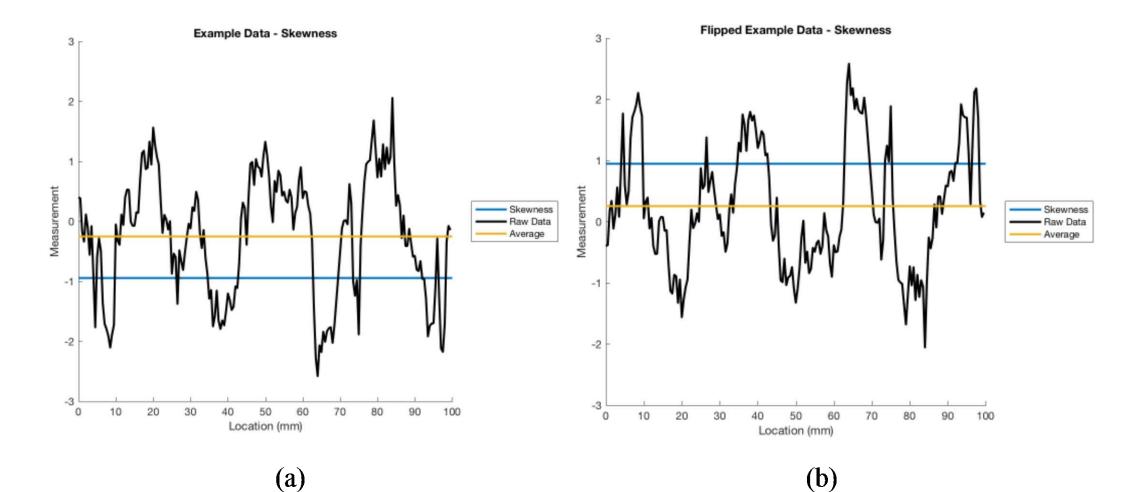
Advancing Transportation Through Innovation Example enveloping tire profiles on 100 mm segment of SMA in SW Virginia; a – d show increasing tire stiffnesses

¹⁶ Source: Mogrovejo et al. (2016)

UrginiaTech

Enveloping Profiles (cont)

MPD vs EDWE for select Smart Road segments



Emerging Macrotexture Parameters (cont)

	Parameter	Reference	Strength	Limitatio
HHT -	Huang–Hilbert transform	Rado and Kane (2014)	Good correlation to friction	Limited testin; intense post- processing
Summi	it Analysis	Le Gal et al. (2008)	In depth analysis of macrotexture asperities	Intense post- processing; limited testing
3D Vo	id Volume	Sanders et al. (2014)	High resolution 3D data	Very sensitive outliers
	etric Statistical Methods Avg roughness (R _a) Mean Square Roughness (R _q) Skewness (R _{sk}) Kurtosis (R _{ku})	ISO 4288 (1996), ISO 4287 (1997), ASME B46.1 (2009)	Common set of tools available to multiple disciplines	Not widely us in common pavement surf vernacular
	Tortuosity	Praticò et al. (2017)	Use in pervious and porous pavements	Difficult to characterize of network level
	Rugosity	Du Preez (2015)	Relates micro and macrotexture	Difficult to characterize on network level

3rd Statistical Moment: Skewness

UirginiaTech

Transportation Institute

Advancing Transportation Through Innovation

19

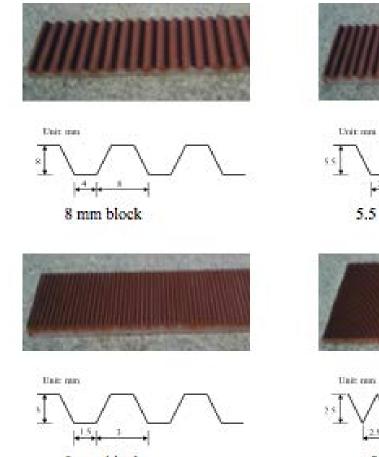
Examples of (a) positive and (b) negative macrotexture (negative skewness indicates negative macrotextures)

WirginiaTech

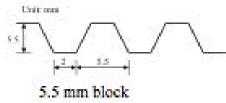
Operationalizing macrotexture data collection

Center for Sustainable Transportation Infrastructure

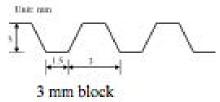
Center for Sustainable

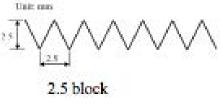

Transportation Infrastructure

> Center for Sustainable Transp. Infrastructure (CSTI)



Reference Surfaces: Machined Plates


- ✓ Huang et al. (2013) used machined stee surfaces (Figure 3) that were tested with several different laser configurations. Us of the steel surfaces in the study also determined optimal travel speed for the laser/camera system used.
- Use of these artificial surfaces affixed to or inlaid with the pavement surface may require moving sensors to avoid damaging the host vehicle's tires, the equipment, or the surfaces. Materials less damaging than steel (e.g., aluminum, ceramics, etc.) have been proposed.



Advancing Transportation **Through Innovation**

Huang, Y., Copenhaver, T., Hempel, P., and Mikhail, M. (2013). "Development of Texture Measurement System Based on Continuous Profiles from Three-Dimensional Scanning System." Transportation Research Record: Journal of the Transportation Research Board(2367), pp 13–22.

Transportation Institute

Reference Surfaces: ARRB "Texture Jig"


 A mechanism was designed and manufactured to simulate a profile moving rapidly underneath the laser sensor using a disk with known dimensions.

Center for Sustainable

Transportation Infrastructure

> A variable speed DC motor was coupled to a spinning disk and a rotary pulse generator with a toothed timing belt. Note that a different sized cog was used to drive the pulse generator or distance measuring instrument (DMI) from the cog used to drive the disk. The cog sizes were not harmonically related. This was to ensure a more 'random' sampling. i.e. the physical sampling points would be different on each rotation.

Operational & Environmental Factors Affecting Data Collection

- ✓ Speed
 - -Data typically collected in the time domain (i.e., 64 samples/sec)
 - -Varying speed effects sampling interval
 - -Sensor exposure time may not be fast enough (i.e., 64kHz max)
- Ambient Light
 - -Ambient light may effect data collected
- Pavement Color
 - -Dark surfaces (i.e., asphalt) do not reflect light as well as lighter
 - -Dark and shiny surfaces (i.e., newly laid asphalt) are especially difficult to collect quality data

Operational & Environmental Factors Affecting Data Collection (cont)

- ✓ Temperature
 - -ISO 13473-1 indicates testing should not occur immediately after paving due to temperature differentials over the new surface
- ✓ Age

24

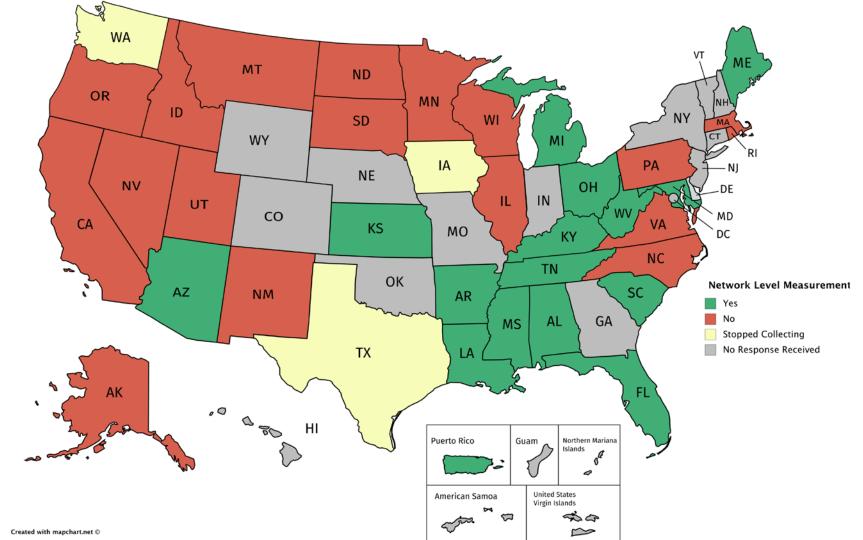
- Macrotexture can increase on AC surfaces and decrease on PCC surfaces with age
- -Age may affect frequency of network testing
- Pavement Distress
 - -Can effect data and calculated parameters
 - -Cracking, rutting, spalling, raveling

Operational & Environmental Factors Affecting Data Collection (cont)

- Transverse Variability
 - -Wheelpath vs. non-travelled surface
 - -Longitudinal engineered texturing (i.e., brush, tine, groove)
- Surface moisture
 - -Wet surface affects return of transmitted energy
 - -Moisture can accumulate on the sensor's receiver
 - -Optical testing must not be accomplished on wet surfaces

Operational & Environmental Factors Affecting Data Collection (cont)

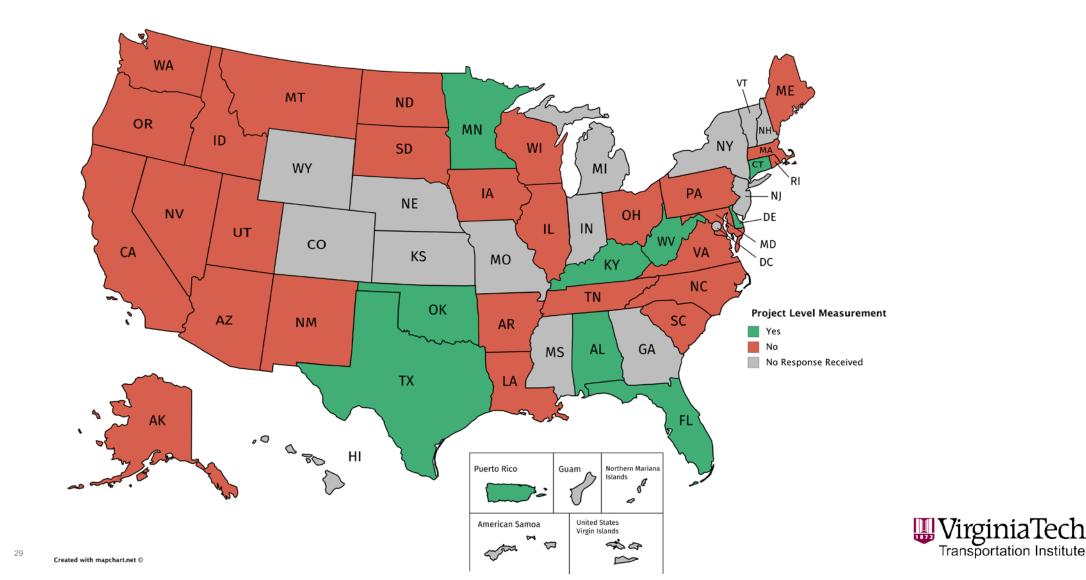
- Vehicle dynamics
 - -Must remove movement of vehicle for accurate measurement
 - -Accomplished real time via Inertial Measurement Units
- Direction of data collection
 - -Line lasers can be oriented in various configurations
 - Parallel to direction of travel
 - Perpendicular to direction of travel
 - At any angle in-between


Who's doing it?

Center for Sustainable Transportation Infrastructure

Center for Sustainable Transp. Infrastructure (CSTI)

States Collecting Network Level Macrotexture


VirginiaTech

Transportation Institute

Advancing Transportation **Through Innovation**

28

States Collecting Project Level Macrotexture

VirginiaTech

Advancing Transportation

Through Innovation

Equipment Used by DOTs to Gather Macrotexture Data

Macrotexture Method	Network	Project
Volumetric	Level	Level
Sand patch	1	6
Grease patch	0	0
HydroTimer	0	2
Manual	V	2
Profile recorder	0	0
Stationary Laser Systems	V	0
C.T. Meter	1	
	1	7
ELAtextur	0	0
Laser Texture Scanner	0	3
DSRM	0	0
Stationary Optical imaging systems		
Stereo Vision System	0	0
Photometric stereo	0	0
Pavement Surface Imager ² Mark ¹ / ₂	0	0
Walking Speed Laser System		
ARRB Walking Profiler	0	0
TM2 Texture Meter,	1	2
ROBOTEX	0	0
High Speed Laser Equipment (HSLE)		
HSLE-SSL (Single spot laser)	10	4
HSLE-LL (Line laser)	1	1
3-D Laser/ camera	7	1
Other		
Florida texture meter	0	1
ARAN Pave 2D Laser Rut Measurement System (64 kHz)	0	1
In house 3-D system	0	1
Contour/ tire depth gauge for tined and grooved surfaces	0	1

30

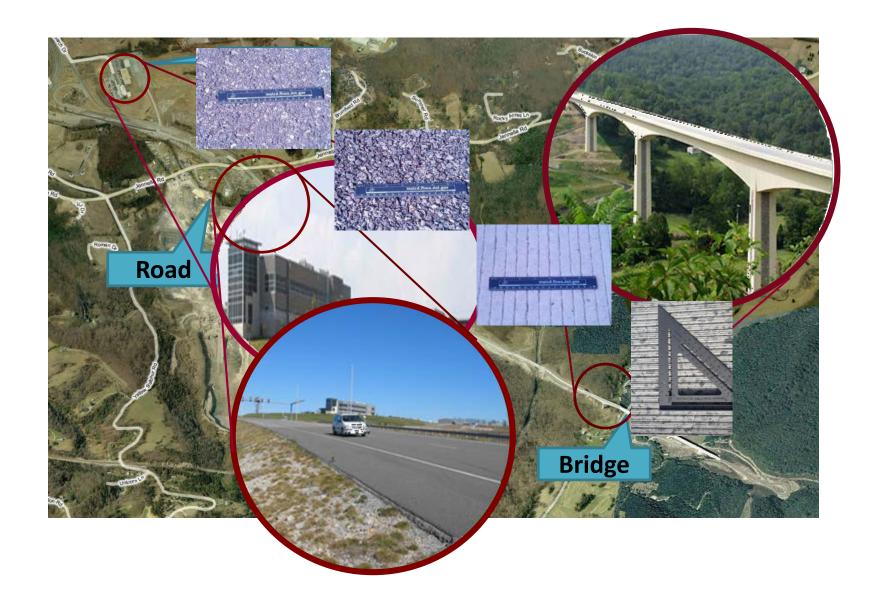
Parameters Used By States

Parameter	Network Level	Project Level
Mean Texture Depth (MTD)	7	7
Mean Profile Depth (MPD)	7	6
Root Mean Square (RMS)	2	3
Estimated Texture Depth (ETD)	0	3
Other		
Skewness, Kurtosis, PSD	1	0
Digital Sand Patch (LCMS)	1	0

WirginiaTech

Upcoming Equipment Comparison

Center for Sustainable Transportation Infrastructure


Center for Sustainable

Transportation Infrastructure

> Center for Sustainable Transp. Infrastructure (CSTI)

The Virginia Smart Road – April 2018

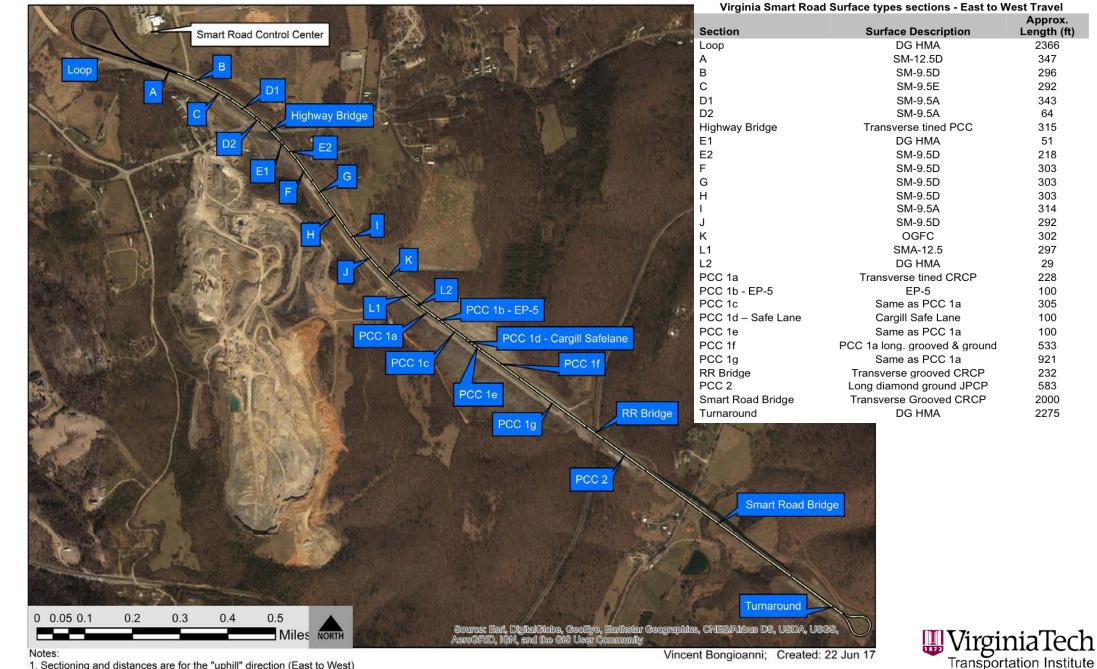
Upcoming Equipment Comparison

The Virginia Smart Road

Reference measurements

Surfaces:

- Dense-graded asphalt concrete
- Stone-matrix asphalt (SMA)
- Open graded friction course (OGFC)
- Continuously reinforced tinned concrete
- Jointed tinned concrete
- Longitudinally ground concrete
- Longitudinally ground and grooved concrete



Advancing

Transportation

Through Innovation

Virginia Smart Road - Surface Types

1. Sectioning and distances are for the "uphill" direction (East to West)

2. When travelling "downhill" (West to East), Section PCC 1b is the Cargill Safelane and PCC 1d is the EP-5; PCC1f is the same surface type as PCC 1a. Downhill distances vary slightly

Questions?

